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ABSTRACT "

(The Conley index is an extremely useful tool for the study of structural

properties of isolated invariant sets such as critical points or periodic

solutions in local flows. The continuation theorem shows that the properties

of the flow which are described by the Conley index are among those which are

invariant under perturbations. This is a fact of great interest in many

applications.

Most of the results in the present paper are not new. The object of this

work is to give a self-contained presentation of most of the basic concepts

and theorems in the index theory for flows which can otherwise only be found

in a number of different papers. Moreover, we have simplified a number of the

complicated proofs.
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CONNECTED SIMPLE SYSTEMS AND THE CONLEY INDEX OF ISOLATED INVARIANT SETS

Dietmar Salamon

1. INTRODUCTION

Some dynamical processes in physics, chemistry and biology can be described by

differential equations depending on parameters which cannot be determined with an 0

arbitrary degree of precision. For the study of such systems it is important to determine

those structural properties which remain invariant under (small) perturbations. Many of

these properties can be described in terms of an index theory which has been developed by
S

CONLEY [3]. Although the basic ideas have been developed over many years, complete proofs

for some of the central theorems are only recently available (see e.g. KURLAND [6], [7],

[8), CONLPY-ZZHNDER [4), FRANZOSA [S]).

The object of this paper is to give a coherent presentation of the basic results in

the index theory of isolated invariant sets. Most of the theorems in this paper are

known, however the available proofs are widely spread in the literature and much more

complicated.

In two preliminary sections we collect some elementary notion* and results from

homotopy theory (section 2) and from the general theory of flows on topological spaces

(section 3). In the main part of this paper we introduce the fundamental concepts in the

index theory for isolated invariant sets (section 4), prove the existence and uniqueness

of a long coexact sequence associated with an attractor-repeller pair (section 5) and 5

establish the basic continuation results for the Conley index (section 6).

The starting point for this work was an essential simplification of the proof that

any two index pairs for a given isolated invariant set are homotopically equivalent after

collapsing the exit set (Lemma 4.7). This result allows a very simple proof of the fact

Sponsored by the United States Army under Contract No. nAAG29-80-C-0041. This material is
based upon work supported 1y the National Science roundation under Grant No. MCS-8210950. S
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that the Conley index of an isolated invariant set is a connected simple system (Lemma 4.8

and Theorem 4.10) and leads to further simplifications in the sections 5 and 6.

A unique coexact sequence for an attractor-repeller pair can be obtained in two

steps. The first step is to show that any index pair can be transformed into an NDR-pair

(section 5.1) so that general results from homotopy theory can be applied to obtain the

existence of a long coexact sequence of index spaces. The second step is then to show L

that all the maps in this sequence induce morphisms of connected simple systems which are

independent of the choice of the index pair (Theorem 5.7).

In section 6 we begin with some general results on parametrized local flows X x A

and in particular we make precise what we mean by a continuous family a(X) of isolated

invariant sets in X x A (section 6.1). The continuation theorem is then phrased for

such a family 0(k) and consists of three parts. The first part is to show that the

injection map of an index space for O(M) in X x X into the corresponding index space

for the global isolated invariant set S =U O(A) in X X A induces a morphism between
eA

connected simple systems which is independent of the choice of the index pair (Proposition

6.5). The second step is to show that this injection map is locally a homotopy

equivalence and the corresponding morphism of connected simple systems therefore an

isomorphism (Theorem 6.7). This local result allows a global continuation of the Conley

index in every compact connected component of the parameter space A by means of a

sequence of compact subsets of A to each of which the local continuation theorem

applies. However, different sequences may lead to different identifications between "far

away" index spaces. We show that any two of these connecting equivalences between index

spaces are infact homotopic if A is simply connected. This means that the "global

Conley index" I(O,X,A) consisting of the index spaces for 0(A) in X x A together

with the above connecting equivalences is a connected simple system provided that A is

simply connected (Theorem 6.9). Finally, things are put together to obtain a long coexact

sequence for the global Conley index associated with an attractor-repeller pair in the

case that A is simply connected (Theorem 6.10).

-2-
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2. HOI4OTOPY THEORYj

In this preliminary section we recall some basic concepts and results from homotopy

theory. We will work in the cateqory of pointed topological spaces and continuous, base

point preserving maps. In order to avoid unnecessary complications, we will assume that

all the spaces under consideration are metrizable and therefore in particular compactly

qenerated. Standard references are SPANIER 112] and WHITEHEAD (13).

For any pair (X,A) of topological spaces with A X we denote by

X/A ((X\A) U EA],[Al)

the pointed space which is obtained by collapsing A to a single point denoted by (A).

A set U CX/A is open if either U is open in X and U (.A or the set

(U ri (X\A)) U A is open in X.

For any two pointed (metric) spaces (Xpxo) and (Yy 0 ) the product space X Y

is understood as a pointed space with base point (x0 ,y0 ). Furthermore, we denote the sum

and the smash product of X and Y by

Xv y Y -xx yO U X0 x L (X x Y

X A Y - X X Y/X V Y

For any two maps f X V X, g Y *Y' between pointed spaces the sum

f vg:X vIX *YV Y' and the smash product f Aq:X A X1 *YA Y' are defined in an

obvious manner. The (unique) constant map between pointed spaces (X,x0 ) and (W,w0 )

will always be denoted by c X +W, c(x) =wo for all x e X, and the identity map by

Ix X X or simply I X X.

The suspension EX of a pointed space (X,x0 ) is defined by

Ex x [0,11/x x 0 U X0 x10,1] U Xx K1

-3-
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Hence Ex X A E where E =[0,11/{0,1} is the pointed circle. The pointed n-sphere

is given by -E 1=1A* A (n times). The suspension EqD of a map

tP X Y between pointed spaces is defined by E* 4P A I EX + EY.

For any two pointed spaces (X,x0 ) and (W,w0 ) we denote by [XIW] the set of

homotopy classes of continuous, base point preserving maps from X to W. Then (X;W] J

is a pointed set, the distinquished point being the class of the constant map. We denote

by [f) the homotopy class of the continuous, base point preserving map f X + W and

*by CX] the homotopy type of the pointed space X. If two maps fo X + W and

f X + W are homotopic we denote this by f0  fl.

For any two pointed spaces (X,x0 ), (Y,y0 ) and any continuous, base point preserving

map 1,P X Y the mapping cone TC is given by

T x x (0,13 U Y/xx 0 U X 10,1]

where the topological space X x [0,1] U Y is obtained from the disjoint union of
(P

X x [0,1] and Y by identifying the pair (x,1) e x x [0,1] with ID(x) e Y for every

x eCX. Note that there is a natural injection of Y into T (* The importance of this

concept is based upon the following simple observation

REMARIC 2.1

Let X + Y and g Y + W be continuous, base point preserving maps between

pointed spaces. Then g 0 (p -c X W if and only if the following lifting problem has

a solution,

T 4)

-4-



Now let (X,x0 ), (Y,Y0 ), (Ww 0 ) be pointed spaces and let Y : X * Y be a

continuous, base point preserving map. Then the induced map # [Y1W) [XiW) is

defined by V (g) (g 0 tP1 for [g] e YiW]. The sequence - A

(2.1) x - Y Z

of continuous, base point preserving maps between pointed spaces is said to be coexact if

for every pointed space (W,w0 ) the induced sequence

[XW L- (Y1w * [ZW]

is exact. This means that ker P= range where

p. ..

ker T = ([g] e [Y,w]g0 ( - c X + wl

*.
range h = [ho 01 e MY;Wl th) e [ZW).

Choosing W - Z and h 1Z or, respectively, W =T and g j : Y *T4 the

canonical injection, we obtain the following useful characterization for the sequence

(2.1) to be coexact.

PROPOSITION 2.2

The sequence (2.1) is coexact if and only if the following two conditions are

satisfied.

i) 0 c X * Z, i.e. the lifting problem

-5-

%

k _. j

" ".-I .. -. -". -. ".'-" .. - -.- . . .- . - . .- . .- . - . . .. . -. .' ".' ' "." .... ".. . ,. '-"-" , -'-".'.'-"•"."



Y .

has a&-solution.

(ii) There exists a map h Z *T such that h 0 * j Y 4T.~ j being the

canonical injection of Y into T

Now let the pointed apace (X,x0 ) be a closed subspace of (Y,x0 ), let i X 4Y-

denote tI-e canonical injection and wr Y + YAC the canonical projection map, and

consider the sequence

(2.2) X y Y,'X

Then ir 0 1 c X 4Y/X. Hence it follows from Proposition 2.2 that a sufficient

condition for the sequence (2.2) to be coexact is that the map i X 4Y is a

cofibration in the sense that the lifting problem

Yx 0 U Xx (0,11 g~-- W

(2.3) f

Y x [0,1]

has a solution for every topological space W and every continuous map

g Y x 0 U X x [0,1] + W. Equivalently, (X,Y) is an NDR-pair in the following sense.

DEFINITIXON 2.3 (NOR-pair)

Let X be a closed subset of the metric space Y. Then (X,Y) is said to be an

NOR-pair if there exist continuous maps r Y x [0,1] Y and a Y [ 0,1] such that

-6-
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1. Q(y) 0 <,,.> y e x

2. r(y,0) - y V y e Y

3. r(x,c) - x V x e X V a e [0,1]

4. r(y,l) e X V y e Y with a(y) < 1 .

In fact, if X,Y is an NDR-pair and the continuous maps r Y x [0,1] + Y,

a Y [0,11 satisfy the conditions of Definition 2.3, then the map

G : Y x (0,1] + Y x 0 U X x (0,1] defined by

[(r(y,l),0-2a(yl), 0 4 a(y) 4 a/2 ,

(2.4) G(y,o) = (r(y,2-2a(y)/O),0), a/2 < a(y) < O ,

(y,0), a 4 a(y) C 1

p
for y e Y and a e [0,1] is continuous and satisfies G(y,0) = (y,O) and

G(x,a) (x,a) for all y e Y, x e x, a e (0,1]. Therefore we have the following

result.

PROPOSITION 2.4

Let (X,x 0 ) be a closed subspace of the pointed metric space (Y,x0 ). Then the

following statements are equivalent.

(i) I X + Y is a cofibration.

(ii) There exists a continuous map G Y x (0,11 Y y x 0 U X x [0,11 such that

G(y,O) = (y,O) and G(x,a) = (x,O) for all y e Y, x e x, , C [0,1].

(iii) X,Y is an NDR-pair.

If these conditions are satisfied, then the sequence (2.2) is coexact.

"S "°

p

-7-o
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The map G Y x (0,1] + Y x 0 u x x (0,1] defined by (2.4) gives rise to a

PPconnection map 6 Y/X + EX which leads to a long coexact sequence. More precisely, we

have the following important result (see 'e.g. WHITEHIEAD 1 13, Theorem 111.6~.22)).

THEOREM 2.5

Let (X,xo) be a closed subspace of the pointed metric space (Y,x01, suppose that

X,Y is an KDR-pair and let the maps r :Y x [0,1] + Y, a :Y + (0,1] satisfy the

conditions of Definition 2.3. Let the connection map 6 tY/X + EX be defined by

f(r(y.1),1-2a(y)), 0 < caly) < 1/2
(2.5) 6uyl)=

IX 0], otherwise

for y e Y. Then the sequence

(2.6) X +~-4 Y Y/X - X Z- Y +~ EYIX -

is coexact.

PROOF, Let Y x0 U X x(0.11 EX be the natural projection which collapses

Y x 0 ULi x 10,1] U X x( I to a single point. Then PX 0 G provides a homotopy

between c Y + EX and 60 ii Y + EX. Now let the maps

j EX + T1= Y x 10,13/Y x 0 U X0 x [0,1] U X XI

k Y/X + T 91 ky) - [y,1]

he the natural injections. Then j 0 6 - k Y/X + T via the hosmotopy

H Y/X E[0,1] T. which is defined by

. . . .. . . . . .!



f[r(y,1,1-2i(y)], 0 4 a(y) C 0/2 ,

H( [y],0j = [r(y,2-20(y)/o),1-0], a/2 < a(y) < a ,

ly, 1-71, LI 4 Cy) C I

Hence it follows from Proposition 2.2 that the sequence Y Y/X E LX is coexact.

Now let py : T, + y be the natural projection which collapses Y x 1. Then the

map py 0 H : Y/X x [0,1] + ZY provides a homotopy between c : Y/X Z LY and

1i 0 6 Y/X + ZY. Finally let us define the map

d :Y T = Y/x X [0,1] U6 EX/[X] x [0,1] U Y/X x 0

by

[[y},2-20] e Y/x x [0,1], 1/2 a 4 I

d([y,a]) = [r(y,1),20-2a(y)] e EX, 0 4 a(y) a 1 1/2

(Y/X x 0], a 4 a(y) 4 1, 0 4 0 4 1/2

for [y,O] e TY. Then the map d 0 EL EX T is given by

[x,20], 0 4 a 4 1/2
d 0 Zil(x,O]) =

[Y/X x 0], otherwise,

for [x,O) e EX. This map is homotopic to the canonical injection Z EX * T6  via the

homotopy 0 EX x [0,1] + T6  which is given by

[x,(1 + r)o], 0 4 (1 + T)o 4 1,
*( !x,o] ,t) = [.

[Y/x x 0], otherwise

-9-
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* for [x,O] e EX and T e (0,1]. Hence it follows from Proposition 2.2 that the sequence

Y" 6 x + EX El EY is coexact.

Finally, Proposition 2.2 shows that if any sequence of the form (2.1) is coexact,

*then so is the sequence EX ZY E* EZ of the suspensions. I

At the end of this section we introduce the extremely useful concept of a connected

simple system which is due to CONLEY [3]. A connected simple system is a subcategory of

* the category of pointed spaces and homotopy classes of maps between these with the

additional property that for any two objects there is a unique morphism between these (in

each direction). More precisely, we make the following definition.

DEFINITION 2.6 (connected simple system)

A connected simple system consists of a collection 10 of pointed spaces along with

a collection L1m of homotopy classes of maps between these such that

Ci) hom(X,) - {[f] e mxxiff) e I m is nonempty and consists of a single element

*for each ordered pair X,X of spaces in10

(ii) if x,x,x e ao nd [f] e hom(X,X), (Ui e hom(i,i), then P

of f] e hom(X,X),

(iii) hom(X,X) {[ (( ] for all x e i0.

Note that each morphism in a connected simple system is necessarily the homotopy

class of s homotopy equivalence. Morphisms between connected simple systems are defined

* as follows.

DEFINITION 2.7

A morphism 0 I J between the connected simple systems 1 (1Ia,) and. Or-'

* = Jo'im) is a collection of homotopy classes of maps between spaces in 10 and spaces

in JOsuch that

-10-



(i) for every X e 10 and every Y e JOthe set *(x,y) ={ije [xyfl[;Pi e

is nonempty and consists of a single element,

(ii) if 0, e I0a Af.d YJ e 70 and if twi e *(x,Y), (f] e hom(X,X),

[g] e hom(Y,i), then Iq 0 Y 0 f e M .

of course, any single map P x *Y, x e i~e Y e JO, induces a morphism between the

connected simple systems I and J via property (ii) in the above definition. if a

morphism 9 I + J consists of homotopy equivalences, then the homotopy inverses of

these maps induce a morphism 9J * 1. Finally we mention that the suspension functor

E associates with any connected simple system I =(IOIm) the connected simple system

ri (IPEZi ) which is defined by

0 m

El 0 Exl e i1, I-{rfJ~flL



i

3. FLOWS

In this section we collect some elementary properties of flows. Although the results .

are known we indicate at some places the main ideas of the proofs. Basic references are

BIRKHOFF [21, BPATIA-SZEGO (1i, CONLEY [31.

Let r be a topological space (not necessarily Hausdorff) and let the continuous map

(y,t) + Jt from r x R into r be a flow, that is y*O = y and 3

Yo(t+s) = (yot)*s for every y e r and all t,s e R. A set S L F is said to be

invariant if S°R S. The maximal invariant subset of a set N L r is given by

I(N) i {y e rfY.R L N)

If N is closed then so is I(N), since the closure of any invariant set is invariant.

The w-limit sets of a set Y L. r are given by p

W(Y) = I(cl(Y-[o,-))) = f cl(Y. t,-))
t>O

(Y) = I(cl(Y(-,O])) = C cl(Y("i,-t]) .

t>o

Now let S L r be a compact invariant set which is Hausdorff in its relative ..-

topology. Let Y L S. Then w(Y) and W (Y) are compact invariant subsets of S and

they are connected if Y is. Furthermore, if U is a neighborhood of w(Y), then there

exists a t > 0 such that YoEt,-) L U. A similar statement holds for w (Y). A compact

invariant set A t S is said to be an attractor in S, if there exists a neighborhood

U of A in S such that A = W(U). A compact invariant set A *. S is said to be a

repeller in S, if there exists a neighborhood U of A* in S such that A* = w* (U).

The following Lemma gives a very useful characterization of attractors.

-12-
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LEMMA 3.1

Let S r I be a compact invariant set which is Hausdorff in its relative topology.
I

Then a compact invariant set A L S is an attractor in S if and only if there exists a

neighborhood U of A in S such that y,(- ,0] V U for all y e U\A.

PROOF: The necessity of the condition is clear since y-(--,O] C U implies y e w(U).

If U is a compact neighborhood of A in S such that y.(-,O) V U for all

Ye U\A, then there exists a t* > 0 such that Y*[-t*,0] V U for all

y e U F cl(S\U). Now choose a neiqhborhood V of A such that Vr0,t L C U. Then

V-[0,-) L U an( therefore W(V) = A.

LEMMA 3.2

Let s r be a compact invariant Hausdorff space and let A be an attractor in S.

Then the following statements hold.

(i) If y e S and c*(Y) (- A i d, then Y e A.

(ii) If I e S and w(l) f. A o d, then w(Y) L A.

(iii) A* = (Y e SIw(Y) A = 6) is a repeller in S, called the complementary

repeller of A.

(iv) A {Y e SIW* Y) i A = }.

(v) If V is a compact neighborhood of A in S wit), V f( A 0 6, then

A = w(V). P
*

(vi) If Y F S, then w(Y) C (Y) A U A*-

(vii) If A' is an attractor in A, then A' is an attractor in S.

PROOF: Let U be an open neighborhood of A in S such that w(U) - A.

(i) If w (y) r A 6, then Y*(-t ) e U for some sequence t, tending to "n

and hence Y P w(U) :A.

-13-
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(ii) If w(Y) f, A P 1, then y-t e u for some t P 0 and therefore

w(Y) - w(y*t) C w(U) - A.

(iii) Choose t* > 0 such that cl(U. t*,ft)) C U and define U*
= S\cl(U. [t*,)).

Then S U U U'. Furthermore U**(-,-t
* ) C S\U and therefore U* is a neighborhood of

W(U ) C S\U C. U*. Hence W*(U*) is a repeller in S.

If Y e w*(U*) then W(y) C a (U*). This implies w(y) n A = # and therefore

y e A* If y e AC, then yR r, U = i since otherwise w(y) L W(U) A. Hence

Y*R L U and therefore y e I(U*) - u*(U*). We conclude that A - w (U* ) is a

repeller.

(iv) The dual arguments of the preceding ones show that

A w (U) - {Y e SI(a(y) ri A

(v) Let U be an open neighborhood of A* in S such that A = w* (U ) and

UC fly = V . Choose t* > 0 such that U*.(- ,-t*] L UC L S\V. Then V*[t*,-) L S\U*

and therefore 1*(V) L S\U*. By (iv), this implies W(V) - A.

(vi) Follows from (i-iv).

(vii) Let U' be a neighborhood of A' in S such that U' L U and

u(U' ( A) - A'. Let y e U' such that y*(-,0] L. U'. Then y.(-,0] L U and

therefore y e w(U) - A. Hence y.(- ,0] L U' rh A and therefore y e w(U' (i A) = A'. By

Lemma 3.1, this implies that A' is an attractor in S.

S
Let A1 and A2 be attractors in a compact, invariant Hausdorff space S L F. Then

it follows from Lemma 3.1 that A, Ci A2  is an attractor in S and from Lemma 3.2 (iii)

that AI U A; is its complementary repeller. By duality, A, Ui A2  is an attractor in

S and A* n A; is its complementary repeller.

we are now going to introduce the concept of a Morse decomposition of an invariant

set S. This concept serves as a tool to generalize the classical Morse theory for

gradient flows on compact manifolds with finitely many critical points to arbitrary flows

and isolated invariant sets. One of the essential features of the general approach is the

-14-
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7.4

- *

continuation theorem which cannot be derived in the context of the classical theory.

Also, in the classical theory there are no means to define an index for invariant sets

other than critical points such as periodic solutions or invariant tori.

DEFINITION 3.3 (Morse decomposition)

Let S C r be a compact, invariant Hausdorff space. Then a finite collection

{Mlwr)li e P} of compact invariant sets in S is said to be a Morse decomposition of

S if there exists an ordering W1'*'' I' of P such that for every

y e s\u{M(w)lw e P) there exist indices i,j e {1,...,n) such that i < j and-

w(y) L M(r.), w (y) L M(-

Every ordering of P with this property is said to be admissible. The sets M(w) are

called Morse sets.

If S is a compact, invariant Hausdorff space in F and {M(W), w e P) a Morse

decomposition of S, then for 1,w e P we define

*< W

if i 9 i and w comes before ii in every admissible ordering of P. This defines a

partial order on P. Clearly, any total ordering of P is admissible if and only if it

preserves the partial order on P. A subset I L P is said to be an interval if

ir,"e I, ite F, <0 <i w" > e I

For any interval I we define the set

-21.
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M(I) = (y e SIw(y) u w*(y) r U MI).
Wel

In the following Proposition we collect some basic properties of the partially ordered

set (P,<).

PROPOSITION 3.4 p

Let S r r be a compact invariant Hausdorff space and let {M(w)lw e P} be a Morse

decomposition of S with the associated partial order "(" on P. Then the following

statements hold.
I

(i) If I C P is an interval, then there exists an admissible ordering

n  of P and i,j e {1,...,n}, i 4 j, such that I - iwi,...,Twj

(ii) If {w,w} C P is an interval, then w < w if and only if there exists a

Y e S such that W(Y) C M(w) and W (Y) C M(W ).
* l

(iii) Let W,w e P. Then T < N if and only if there exist sequences

0  ....,k = w e P and y1 ,.... e s\U{M(IT)Jw e P) such that

C(Y C M(WJ 1 ), W (Y) C M(Ij), j - 1....k .

(iv) Let I C P be an interval. Then MCI) is an attractor in S if and only if

(3.1) e' P, e I, 'w, e->w I.

In this case M(P\I) is the complementary repeller of M(I) in S and I is said to be

an attractor interval and P\I a repeller interval.

(v) If I L P is an interval, then M(I) is a compact invariant set,

{M(1), e I} is a Morse decomposition of M(I) and WM(iw1r e P\I} U {M(i)} is a Morse

decomposition of S.

-16-
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PROOF:

Ci) Let I C P be an interval. Then the sets

i Is e 1 x e I with w < w'), t P\(I U J)

are intervals and can be ordered in the form J,I,K, preserving the partial order on P.

Now choose an ordering of P which preserves the ordering of the sets J,IK and the

partial order on P.

(ii) Let {W,1i be an interval and suppose that W < . Then, by i), there

exists an admissible ordering on P such that W follows immediately on 1. Hence

there exists a y e S with w(y) C M() and w (Y) C M(wT), since otherwise one would

get another admissible ordering by interchanging I and I contradicting w ( w

(iii) Suppose that T < W1 and construct a sequence W0 . T < II < ... < Wk  -ir

such that there is no w e P and no j e (1,...,k) with wjI < W < Wi. Then the sets

{W j_1,Wj C P are intervals and therefore (iii) follows from (ii).

(iv) If I L P does not satisfy (3.1), then there exist I e P\, w e I such that

(w,11 is an interval and < w *. Hence it follows from (ii) that M(I) cannot be an

attractor.

In order to prove the converse implication, let e 8 P satisfy

(3.2) 1! w V P e p

Then I - P\(wI } is an interval with the property (3.1). Let U* be a neighborhood of

7*
M(I) in S with cl(U*) ri M(w) = 1 for all I e I and let y e U \M("*). Then it

follows from (iii) and (3.2) that w(Y) fj cl(U*) - i and therefore y.[O,n) V U*. Hence

the dual result of Lemma 3.1 shows that M( ) is a repeller in S. The complementary

attractor of M( ) is given by M(I) - {Y e Sl (Y) ( M(I')l. Therefore M(I) is an

-17-
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attractor in S and in particular a compact invariant set. Now statement (v) follows by

induction with S replaced by MM).

Statement Wv is a direct consequence of (iv) and Wi.

The notion of an attractor-interval as well as the proof of the previous Proposition

are due to FRANZOSA (5).

The following concept has turned out to be very useful for the development of a

theory which covers a wide range of applications.

DEFINITION 3.5 (local flow)

Let r C I' be an open subset which is Hausdorff in its relative topology and let

0X r r0  be locally compact. Then X is said to be a local flow if for every Y e x

there exists a neighborhood U of Y in r and an c > 0 such that

(x r U). [0-c) C x

DEFINITION 3.6 (isolated invariant set)

Let x C r be a local flow and let S C X be a compact invariant set. Then S is

said to be an isolated invariant set if there exists a compact neighborhood N of S

in X such that S I(N). In that case N is said to be an isolating neighborhood

(for s in X).

If N1  and N2  are isolating neighborhoods for the isolated invariant sets S"

and S2 ,  respectively, in the local flow X C r, then SI r S2  is an isolated invariant

set in X with the isolating neighborhood N, r N2 . The following example shows that

there is no corresponding statement for the union of isolated invariant sets.

S

-18-
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II

Figure 1

A4 LEMMA 3.7

If N is an isolatin2 neighborhood for the isolated invariant set S in the metric

local flow X L r, then there exists a neighborhood N of N in X which is still an

isolating neighborhood for S.

PROO_: If the statement were false, then there would exist a sequence Yk e X\N such

that d(Yk.t,N) 4 1/k for all k e N and t e R. A limit point y of yk would then

satisfy i e cI(X\N) C I(N), a contradiction.

If S is an isolated invariant set in a local flow X L r and {M1w)[ e P) is a

Morse decomposition of S, then the Morse sets M(1) are also isolated invariant sets

in X.

The following compactness result has been established in CONLEY-ZEHNDER (4, Lemma

3.1]. For the sake of completeness we present a slightly simplified proof.

LEMMA 3.8

Let N L X be an isolating neighborhood for the isolated invariant set S in the

metric local flow X c r, let (M(1I)lI e P) be a Morse decomposition of S and let "<"

be the associated partial order on P. Then the following statements hold. -

-19-
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i

(i) If Y[O,) C N then there is a N e P with w(y) C M(i). If Y*(-,O L N
* *( *

then there is a w e P with w Y) M ). S

(ii) If I L P is an attractor interval then the sets

M-(i) = {y e NIYT(-(,0) C N and (y) C M() for some w e I}

M+(P\I) = (Y e NIY[O,-) C N and W(y) C MCw) for some w e P\I}

are compact.

PROOF: Proposition 3.4 allows us to reduce both statements to the case P = (w,} where

{v} is an attractor interval, that is I % w.

In order to prove statement (i), let us assume that y.[O, ) C N and W(y) ( M(w)
* *

and W(Y) 1 M(I ). Since w(Y) is connected, this implies that w1Y) f M(w) U Mlr ) and
*

hence there exists a y' e w(y) c S with V 0 M(w) U M(w ).

Therefore w(') L MIW) and W CY') C MCw). Making use of the fact that Y'*R L w1y),

we obtain that M(w) 0 w(y) ' and M(1 ) r W(Y) ' C. Now let us choose an open

neighborhood U of M(w) in N such that cllU) r: Mo! ) -. Then there exists a

sequence tn ) 0 tending to infinity such that yotn e U, YO = lim y.t e M(w) and

Y*[tn'tn+i] V U. Hence there exists a sequence tn 8 [tnltn+1] with

y*[t ,t] C cl{U) and yt' U. Let y be any limit point of y-t'. Then
n' n n *LtT beayn5.i!

Y e N\U and Y1 e w(y) c S. Furthermore the sequence t' - tn has to be unbounded

since otherwise yi YO
"R 

C M(w). Put this implies that y1 .(--,O] C cl(U) and
*(Y *

therefore w (y I C(U) = m(w). Since y1 0 M(w) we conclude that w(y1) C M(W

contradicting the fact that w* t w. This proves the first assertion in (i). The second p

assertion in (i) can he established by analogous arguments.

For statement (ii) it is enough to show that the respective subsets of N are closed

since N is a compact Hausdorff space.

9
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M+(P) is close6 Let Y e N\M+(P). Then by (i), there exists a t > 0 such that

yt N. This implies that y'*t 0 N for all y' in some open neighborhood of y in

N. Hence N\M+[P) is open in N and therefore M+P) is closed.

M+ (W) is closed: Let Yn e m Or m+(P) converge to y M+P) and suppose that

Y t0 M+(N*). Then W(Y) C Mlw) and w(yn
) 
C M(CI!) for all n e N. Now let U be an

open neighborhood of M(w ) in X such that cl(U) f. M() 6 I. Since w(y) L M(W),

there exists a t > 0 such that y-t 0 cl(U) and therefore y n.t 0 cl(U) for every

sufficiently large n e N. For each of these n e N there exists a tn > 0 such that

yn.(t n
,
) C U F.N and n.tn 0 U. Let us choose a subsequence such that Yn.tn

converges to y • Then y 0 U and y *[0,-) L cl(U) ftN which implies that

* C

w(Y ) C MCI ). Moreover, the sequence tn has to be unbounded since otherwise

* * C t o

Y e Y*R and thus w( ) C M(). Hence we obtain that Y -t - lim Yn.(t+t) e N for
n n

all t e R and thus Y e S. Recalling that Y 0 U, we conclude that w (y ) C M(I

and therefore W (I ) C M(l). But this is a contradiction to w % I.

The closedness of M-(P) and M-(w) can be established by analogous arguments. II

-21-
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. . . -

4. INDEX THEORY

4.1. EXISTENCE OF INDEX PAIRS 3

The concept of an index pair plays a crucial role in the definition of the Conley

index for isolated invariant sets. For the introduction of this concept we need the

notion of positive invariance. Let N be a compact subset of a local flow X L r. Then

a subset K L N is said to be positively invariant in N if

y e K, t ) 0, y-[0,t] L N ===> Y't e K

3
DEFINITION 4.1 (index pairs)

Let X t r be a local flow and let S L X be an isolated invariant set. Then a

Pair (NI,N 0 ) of compact sets in X is said to be an index pair for S in X if

(i) N \N0  is a neighborhood of S in X and S = I(cl(N \No)),

(ii) No  is positively invariant in N1 , and

(iii) if y e N1 and Y*(O,-) V N then there exists a t ) 0 with Y-[O,tl L N,

and y-t e N0 .

The crucial property (iii) of an index pair (N1 ,No) says that every orbit which

leaves N1  in forward time has to go through the exit set No before leaving N1 .

For any subset K L N we define the minimal positively invariant set in N which

contains K by 3

P(K,N) = fy e N13 t ) 0 with y.[-t,O L N, y.(-t) e K"

The whole difficulty for proving the existence of index pairs lies in the fact that

P(K,N) need not be closed, even if K is closed, and that its closure need not be

positively invariant. This is illustrated by the following example in which the (posi-

tively invariant) exit set N- = P NI'f0O,E) L N for every E > 0) is not closed. 3

-22-
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Figure 2

This difficulty can be overcome by means of the following Lemma which is due to CONLEY-

ZEHNDER (4, Lemma 3.2). However, there is a thistake in the proof of this result in (4].

we present a (hopefully) correct proof using an argument in CONLEY [3, p. 47].

LEM1KA 4.2

Let x c r' be a metric local flow, let N L X be an isolating neighborhood of the

isolated invariant set S (_ X and let {M(1r)ir e PI be a Morse decomposition of S with

the associated partial ordering "<" on P. Then the following statements hold.

Ci) if K C . N is a compact set with YC fiM'(PC = '6' then P(K,N) is compact.

Iii) For every attractor interval I L- P and every open neighborhood U of

mCIT) in r there ex-ists a compact neighborhood NI of MC(I) in N such that N, L U

and NI is pcsitively invariant in N.

-23-
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PROOF:

(i) Let Yn ( P(Y,N) converge to y and let t n 1 0 he chosen such that

n [-tn,0] C-N and V *(-t n ) e K. Then the sequence t n  has to be bounded since
Yn.-tnn n t** * L

otherwise any limit point Y of Y *C-t ) satisfies Y e K and Y *[0,-) C N,
n n. ,

contradicting K r M+(P) = go Hence the sequence tn  has a limit point t ) 0 and we

get Y*(-t,0] C N, 'e(-t) e K, and therefore Y e P(K,N).

(ii) We prove statement (ii) in four steps. Let us first choose any compact

neighborhood W of M(P\I) in N such that W P M-(I) =i.

Step 1: If K C N is a compact set such that M-(I) C P(K,N) c- u r (N\W), then

P(K,N) is compact.

Proof: Let Yn e P(K,N) converge to Y and choose tn ) 0 such that

.n*[-tnO ] C N and Y n(-tn ) e K. Then Yn" [-t n01 C P(K,N) C U r (N\W) for all

n C N. If tn is an unbounded sequence, then we obtain y.(-,0] C cl(U C (N\W)) which

implies w (Y) C M() for some v e I and therefore Y e M-(I) C P(K,N). If the

sequence tn is bounded and t ) 0 is a limit point of tn, then we conclude that

o[-t,O] C N, 'Y(-t) e K and therefore Y e P(K,N).

Step 2: There exists a t* > 0 such that

* I
Y-(-t ,0] C cl(N\W) ===> Y e U C (N\W)

Proof: If this implication would not hold, then there would exist sequences yn e N andn. - - .

tn ) 0 such that tn tends to infinity, Yn* [-tn 0] C- cl(N\W) and Yn 0 U r (N\W). Any p

limit point y of Y would then satisfy Y 0 U r (N\W) and Y (-,0] C cl(N\W). But
n

this would imply (,i (Y) C MCI) and therefore Y e M-(I) C U r (N\W) which would be a

contradiction.

-
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Step 3: Construction of NX.

Let us define the sets

A ={Y e M (z)IYq1O't*I C. !qI, B ={Y e M (I)Iy.CO,tl V-( N)

Then for every Y e A there exists an open neighborhood U(Y) of y in r such that

cl(U(y))*[o,t u f, (r\w). For every Y e B there exists a t(Y) > 0 such that

y.[0,t(y)] L U Ii (r\W) and ylt(y) 0 N which enables us to choose an open neighborhood

UIY) of y in r such that cl(U(Yfl(l[,t(Y)] L U r. (r\w) and cl(U(y))*tly) riN - 0.

Since M-(I) is compact, there exist finitely many 1,'...'Yk M'(I) such that the sets

U(y), j = 1,k..,k, cover M(I). We define

k
K = L cl(U(Yj) ri N), Ni , P(K,N)

J-1

Step 4: NI C U r (N\W).

Proof: Let y e NI and let t 0 with y."-t,0l C N and y.(-t) e K. Then

Y.(-t) e cl(uJ(y)) for some j e {1,°o0,kI° Suppose that Y 0 uf (n\w). If y e A,

then y*.-t,t -t) L U .(r\w) and therefore t < t. Hence there exists a

t' e [0,t-t*] such that yo[-t,-t') C U r. (N\W) and y*(-t') 0 U F, (N\W). This implies

y.[-t'-t ,-t') L cl(N\W) and Y¥(-t') 0 U ri(N\W) contradicting Step 2. If y e B,

then Yo[-t,t(Yj)-t] c U ( (r\W) and y°(t(yj)-t) 0 N. From y.f-t,0] C N we obtain

t(Y.) > t and from Y 0 U fi (r\W) we obtain t(Y¥) < t, a contradiction. We conclude

that Y e N r u ( r\w) = U f, (N\W) which proves Step 4.

By definition, the set N, constructed in Step 3 is a neighborhood of M!(I) in

N which is positively invariant in N. Furthermore NI * P(IK,N) L U f (N\W) (Step 4)

"- " and hence NI is compact (Step I). I

7
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Now we are in the position to establish the following important existence result for

index pairs (compare CONLEY-ZEHNDER (4, Lemma 3.3]). p

THEOREM 4.3 (existence of index pairs)

Let X c r 1e a metric local flow, let N C X be an isolating neighborhood of the

isolated invariant set S C X and let U be any neighborhood of S in r. Then there S

exists an index pair (N1 ,N0 ) for S in X such that N I and NO are positively

invariant in N and cl(N 1 NO) L- U.

PROOF: By Lemma 3.7, the sets

M= {y e NIY-[O,') C N), N = { e NY-( -,0] INI

p

are compact and S = M
+ n M-. Hence there exist open neighborhoods U

+ 
of M+ in N

and U- of M- in N such that

cI(U + r U-) c U f (X\cI(x\N)) .

By Lemma 4.2 there exists a compact, positively invariant set N! in N such that

Ni C U and Nj is a neighborhood of M in N. Now define

No P(N\U+,N)o N, N; b N0

Then No and N, are positively invariant in N and N I\N 0 L U
+ 

f- U- and hence

cl(N1 \N 0 Q U. Furthermore No  is compact (Lemma 4.2(i)) and No f, S = tS. Therefore

N \N0 is a neighborhood of S. Clearly S I(cl(Nl\N0)), since S C cl(N1 \N0 ) L N.

It remains to show that No  is the exit set of N1 .

-

-26-.
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For this purpose let y P N1  such that y*[O,m ) N N1  and suppose that Y 0 No .

Define

t = sup(t > oIy.ro,t] N1 \No1

Then Y't e cl(N \N0 ) 0 cl(O + r U-) C X\cl(X\N). Since X is a local flow there exists

an C > 0 such that y [t *,t +c] . X\cl(X\N) L N. Since y-t e N, we conclude that

y'[t ,t +c] L. N, and Y .t ,t+C] fi N0 + ). Iii

The next result shows the existence of a filtration of index pairs associated with a

Morse decomposition of S (compare CONLEY-ZEHNDER [4, Theorem 3.11).

COROLLARY 4.4

Let X C. F be a metric local flow, let S C. X be an isolated invariant set and let

W(M(1),s e P) a Morse decomposition of S with an admissible ordering 21,.'''lr of P.

Furthermore let (Nn,N0 ) be an index pair for S in X. Then there exists a filtration

N0 C N1 C.. C Nn 1 L Nn

of compact sets such that (Nk,Nj.1) is an index pair for

k

Mkj =Y e SIW(Y) Uw (W ) C UO M(Wi)
i=j

whenever 1 4 j ( k 4 n.

PROOF: Define N = clN \N0). Then, hy Lemma 3.7, for any J e (1,...,n} the sets
nO0

+= {Y S NIY" [0,-) C N, w(y) C M .}Mjj

-27-

. - " -.

S. . . . . . . . . .

:' .. .. .. ..'. " ". . . . . ..-.-. ." "... ..... . ..-. ..,. .-.--. ..'.-.,.', ..'< ..' - -.--'-- .. . " ' .:'.'. '-' -::-: .::' : "-:: ° ',!: '

,':--,.' -:-: .-L.-:..: ":.'. .'-, -:'-1 -'-..-.< -.--.-. .'..'. . ..'., .'..- ',? -.. .:--,-= .-.. .. :. .. -. ... .-.-..- '. ...-. -..-. ...-... . .- .-. .. .-
_,.3# .. .. :; ,:- '- : , .,... .- ",.-.. , : ,.,.,- '..'.. .'. .- .- .- .' , -... • . ". - ",. ...-. .. . ..." ',, .., ,. .. .,. • -.



i

M ={Y e NIY.(--.0] C , ~y) N Mj}

are compact. Now let NA = N h Nn and define NI L N recursively such that N3 is a

compact neighborhood of M in N which is positively invariant in Nq+ I and satisfies+I

N(, Mj+ = 6 (Lemma 4.2), j = n-i... .. Then the sets Nj = Nj U No  satisfy the

requirements of the Corollary. III 5

REMARK 4.5

A very nice refinement of the previous result has recently been established by S
FRANZOSA [5]. Let N C X be an isolating neighborhood of the isolated invariant set S

in the metric local flow X c r and let {M(C)Iv e P) be a Morse decomposition of S

with the associated partial order "<" on P. Let J denote the set of attractor

intervals in P. Then FRANZOSA has shown in [5] that there exists a family {N(I)II e J)

of compact, positively invariant sets in N such that

(i) (N(J),N(I)) is an index pair for M(J\I) for all 1,3 e J with I k J, and

(ii) N(I (IJ) = N(I) (. N(J), N(I U J) - N(I) U N(J) for all I,J e J.

The proof is not easy. The essential difficulty is the requirement that both the

intersection and the union property have to be satisfied simultaneously.

4.2. EUIVALENCE OF INDEX PAIRS

The most important property of index pairs is that the homotopy type of the pointed

space NI/N0  is independent of the choice of the index pair and therefore depends only on

the behavior of the flow near the isolated invariant set S (CONLEY-ZEHNDER [4], KURLAND

[6]). We present a highly simplified proof of this fact. More precisely, we will show

that for any isolated invariant set S in a local flow X the collection

(N 1N0I(Nj,N 0 ) is an index pair for S in X)

-28-
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along with a certain collection of homotopy classes of flow induced maps is a connected

simple system in the sense of Definition 2.6. The proof consists of the following three

I

Lemmas.

LEMMA 4.6

Let N be an isolating neighborhood for the isolated invariant set S in the metric

local flow x c r and let U be a neighborhood of S in X. Then there exists a

t > 0 such that

I

'r-t,t) LM N - e U

PROOF: if there would exist sequences y. e x\ r and tk o 0 such that tk tends to

infinity and Yk [t k# tk ) L N for all k eN, then any limit point y of y. would

satisfy y e cl(X\U) and YIR L N. This would imply y e s ricl(x\U), a

contradiction. I

The next Lemma defines a flow induced map from NIN0  into N for any two index

pairs (N11N0 )o (i' of S in X.

LEMMA 4.7

Let (N1bN) and (N1 N 0  be index o airs for the isolated invariant set S and

choose T > 0 such that the following implications hold for t T

(4.1) Y"--tt l C N I \No y e owu

(4.2) y0(-tt) L i\ > y e N 1 \No

Then the map f N1 N0 x T. ) n e defined by

-29-
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(4) {t[]) ( y3t], if y*(0,2t] C N \No, y-(t,3t] C iI\o0
(4.3) fC(y),t) = t[f -1 0

N [0 1, otherwise ,

for Y e N1  and t )T, is continuous.

PROOF: S

Ist case. y*(t,3tj K cl( 1 ).

In this case y-t 0 cl(i\ 0 ) for some t with t < t* < 3t. Hence there exists
1 0

a neighborhood U of y.t in F such that U ( cl( i id. By the continuity of

the flow, this implies the existence of a neighborhood W of (y,t) in F x [T,M) such

that, whenever (y',t') e W, then yCt e U and t' < t* < 3t'. We conclude that

y'r[t',3t') VLI\0 and hence f([V,t') = IN0] for every (y',t') e w with y' e N1 .
1 0 0

Note that the case y-[0,2t] V cl(NI\N0) can be treated in a strictly analogous

manner. Hence we can assume from now on that

(4.4) Yr[0,2t] C cl(N I\N 0, -[t,3t] L cl(NI\ IW0

2nd case Y- [t,3t] 1 " -

In this case it follows from (4.4) that Y(t,3t] NiO. By (4.2), this implies .-
1 0

y.2t e N I\N0 and hence y.[0,2t] C NI\N0 . Therefore f([ylt) = y.3t e N

Now let U be a neighborhood of y-3t in r. Then, by the continuity of the flow,

there exists a neighborhood W of (y,t) in r x [T,m) such that, whenever

(yl,t') e w, then

y*-(0,2t'] ri No  1 6, y'-(t',3t'] f, N0  6, y'.3t' e U

If Y' e NJ, then we obtain y'.[0,2t'] C N1 N0  which, by (4.1), implies Y'.t' e
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and hence Y'"Ct',3t'] Q N \ Therefore f([Y],t') =[yl.3t'] y.*3t' e u for every

(Y'.t,) e w with Y, e N,.

3rd case y*[t,3t] 1.g0

In this case it follows from (4.4) that Y*3t e N *Now let [U] be any
0

neighborhood of tUfy],t) [R [0 3 in 1 0i and define

0 10

U fu ([U 1 0i \ u (r\i U ii

10 1 0

Then U is a neighborhood of N0  in r and

[u u n (U \gr u ([Fo)

By tae continuity of the flow, there exists a neighborhood W of (yt) in r x[n

such that, whenever (y',t') e W, then y'-3t' e U. This implies that

f([y'l,t e {e[''3t'],[o]1 C (U f, N1 \io
I U [o] = [U]

for every (y',t') e w with y' e . II

LEMMA 4.8

Let (NI,N 0 ), (NI), (, (NIN 0 ) be index pairs for S. Choose T ) 0 such that

(4.1) and (4.2) are satisfied for t ) T and suppose that the implications

(4.5) Y.[-t,t] C \ ===> y e \

(4.6) ', -t,t] C \ == e Ik

hold for t ) T. Finally, let f NI/N 0 x [T,-) R 1 / 0  be defined by (4.3) and
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R: IN g X Ci) I \P0aaoosy Then the following equation holds for

t )max{TT}

{[Ylft1 , 'Y [0,4t] N. N1 \No 0' -[2t,6t] . N o 0

[0, otherwise, y e N,
0S

PROOF: We have to show that

y*[0,2t] C N 1\No *Y-ft,5t1 C 1 \N0, y-[4t,6t] L N \

is equivalent to

y'[0,4t] C N \No Y*E2t,6otj

But this follows immediately from (4.1-2) and (4.5-6). I

Now we are in the position to define the index of an isolated invariant set.

DEFINITION 4.9 (index)

Let x c r be a metric local flow and let S be an isolated invariant set in X. w

Then the homotopy type h(S) - [N1/N0] of the pointed space N1/N0 , (N1 ,N0 ) being an

*index pair for S in X, is said to be the homotopy index of S in X.

The Conley index of S in X is the pair

I(S) I(SX) 1')

* where
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10 = {N1 1N0 1(N1 ,N 0 ) is an index pair for S in X)

I = {ft ]1I 01MO / 0 e Io  and ft .N1/N ° * 1A

is the map defined in Lemma 4.7)

THEORFM 4.10

Let x cr be a local flow and let S be an isolated invariant set in X. Then

h(S) is independent of the choice of the index pair and I(S,X) is a connected simple

system.

PROOF: The existence of a homotopy class of maps in I. between any two spaces NI/N0, •

N /N 0  in 10 follows from Lemma 4.7. Lemma 4.8 shows that the composition of any two

morphisms in Im is still in Im. Finally, it follows from Lemma 4.7 with Ni a Ni'

No = N0, T - 0 that [INI/N 0  e Im for every NI/N 0 e I . This shows that I(S,X) is a S
connected simple system. Therefore the morphisms in Im  are hoemotopy equivalences and

hence h(S) is independent of the choice of the index pair. I

Note that the previous theorem summarizes the paper 16) of XJRLAND and one of the

main results in CONLEY-ZEHNOER (4, Theorem 3.2].
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5. A COEXACT SEQUENCE FOR ATTRACTOR-REPELLER PAIRS

The purpose of this section is to establish a coexact sequence for the Conley index p

of an attractor-repeller pair along the lines of Theorem 2.5. The first step in this

direction is to show that any given index pair can be modified in such a way that it

becomes an NDR-pair (section 5.1). Secondly, we have to show that all the maps between

index pairs which are involved in the coexact sequence induce morphisms between the

corresponding connected simple systems which are independent of the choice of the

particular filtration of index pairs (section 5.2).

I|

5.1. REGULARIZATION OF INDEX PAIRS

We will show that an index pair is an NDR-pair if It is regular in the following

sense.

DEFINITION 5.1 (regular index pair)

An index pair (NI,N0 ) for an isolated invariant set S in a local flow X C F is

said to be regular if the function T : N1 + [0,- ] defined by

i 'p
sup~t > 01y.[0,t) C NI\N0}# Y e NI\N0 ,

(5.1) "(Y { -u'0 y e No , -.

is continuous.
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The figure below illustrates an index pair which is not regular

N I

IN a

Figure 3

The next Loemma gives a sufficient condition for an index pair to be regular. we were not

able to prove that this condition is also necessary and leave this as a conjecture.

LEMA 5.2

Let (N.1,NO) he an index pair for the isolated invariant set S in the local flow

x c r and suppose that

(5.2) '1[0,e] VL cl(N \N0  v Y e IN V C > 0

Then the index pair (N1 ,NO) is regular.

PROOF: Let T IN 1 [0,-) be defined by (5.1) and let y e IN, be gi.ven.

First assume that 0 < T(Y) 4 - and choose T e (0,T(Y)). Then Y-[O,T] L IN 1\N 0

and thus there exists a neighborhood U of Y~ in r such that U* [0,T] (IN0  $ Hence

yl'F,T] C IN ONO for all y' e u FIN, and therefore T(Y') > T for all

yr e u r N1.
Secondly, suppose that 0 4 r(J) < and choose T e ('r,. Then it follows from

(5.2) that Y*t 0cl(N I\N 0  for some t e IT(J),T]. This implies that there exists a
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neighborhood U of y in r with 11-t f. cI(NI\N0p = 0. We conclude that

r(Y') 4 t 4 T for all Y' e U hN 1 .

This proves the continuity of T.

In order to transform a given index pair into a regular one we prove the existence of

a Lyapunov function (compare CONLEY [3, p. 33]).

LFMMA 5.3

Let (N1 ,N0 ) be an index pair for the isolated invariant set S in the metric local n

flow x c r. Then there exists a continuous (Lyapunov) function g : N, + [0,1] such

that

(5.3) g(Y) f 1 <===> y*[0,'I C N1  and W(Y) L S ,

(5.4) g(y) = 0 <=-> y e No

(5.5) t > 0, 0 < g(y) < 1, y-[0,t) L N1 ===> g(Y-t) < g(y)

PROOF: Following the lines of CONLEY [3, p. 33] we construct the Lyapunov function .

g : N1 + (0,1] in three steps.

Step 1: The function I N, * [0,1] defined by

d(y,N0 )

d(Y,N 0 ) + d( ,S) ' Y e N1

is continuous and satisfies NO = L-(0) and S = £-I(1).

Step 2: The function k : N1 + [0,1] defined by

k(y) = sup['(y*t)It 0, 'Y*0,t] . NI} •
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is continuous and satisfies

k(y) = 1 < y==) y[O,) C N1, w(y) C S

k(y) 0 <=> y e No

y-[0,t] C N I ===> k(y.t) k(y)

PROOF: The only nontrivial property of k is the continuity.

Let y P N I he given, assume first that 0 < k(y) 4 1 and choose c e (0,k(y)).

Then there exists a t > 0 such that y.[0,t] C N, and L(y-t) > k(y) - E. Then, of

course, y. [0,t) ( N, No and hence there exists a neighborhood U of I in F such

that U. [0,t] , N0 = 0 and £('y'-t) > k(y) - c for all y, e U Fi NI. This implies

k(y') > k(y) - C for all y' e U FNj.

* Secondly, suppose that 0 - k(y) < 1 and choose e e (0,1-k(y)). Furthermore,

assume that there is a sequence yn e N1  such that y = lim yn and k(y n) > k(y) + c

for all n e N. Then there is a sequence tn ) 0 such that yn. [0,tn] C NI\N 0  and

Y(n-tn ) > k(y) + C. The sequence tn has to be bounded since otherwise

[ •0,-) C NI\N0  contradicting k(Y) < 1. Hence the sequence tn has a limit point

t and we obtain y.(0,t] C cl(N \N 0 ) and X(y * t) ) k(y) + e, again a contradiction.

We conclude that there exists a neighborhood U of y in r such that

k(y') 4 k(y) + C for all y e U riN 1 . This proves the continuity of k.

Step 3: The function g : N, + [0,11 defined by

t(Y)

g(y) f y e- k(y&)d , t(y) = sup{t > 01y.[O,t] C NI
0

satisfies the requirements of the Lemma.
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PROOF: The conditions (5.3) and (5.4) are obviously satisfied. In order to establish

(5.5), let Y e N1  satisfy 0 < g(Y) < 1 anti suppose that

0 < t 4 t =sup{& > Oly*(0,&] C N \N I<
1 0

Then

t -t -

g(yt) e-4 k(y*(t+&))dt
0

t*-t -&

0

t -

0

=g(Y)

Now we prove the continuity of g at Y e N1. If Y~ e No this follows from the

fact that 9(y') (k(Y') for all y' e N1. If y-[O,w) C N1\N0  then the continuity is a

consequence of the inequality

T
Ig(Y') -g('r)I 4 l k(y'.C) -k(y.&)!dC + 2 j e d

0 T

for T large and y'*[0,T] C N \No. if Y e N1 \N0  and Y-10,-) (,N0o ~ then for

every C > 0 there exists a T > 0 such that y.[0,T) C N1 N0  and k(y.T) < C. Hence

the following inequality holds for all y' e N, with y'*(0,T] C N1 N0 and

k(y'T) < 2e
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Tg(y)- g(y) I .k(y*-) k(y.4)jd4 + 3C

0

Thus the continuity of g follows from that of k. - -

The completes the proof of Lemma 5.3. I"-

REMARK 5.4

Let (N1 ,N0 ) be an index pair for the isolated invariant set S in the metric local

flow X (- r and let q N1 + [0,11 be the Lyapunov function of Lemma 5.3. Then we can

replace No by Ne = {Y e N1 1g(Y) 4 el and it follows from Lemma 5.2 that (Ni,Nc) is a

regular index pair for S in X in the sense of Definition 5.1.

5.2. A COEXACT SEQUENCE

Let S be an isolated invariant set in the metric local flow X _ r, let A be an

attractor in S and let A* be the complementary repeller. Then it follows from

Corollary 4.4 that there exists a filtration No C N1 C N2 of compact sets in X such

that (N2 ,N0 ) is an index pair for S, (N1 ,N0 ) is an index pair for A and (N2,N) is

an index pair for A*. By Remark 5.4, we can assume without loss of generality that the

index pair (N2 ,Nj) is regular. Hence the function T N2 + [0,-) defined by

sup{t > 0 y.[0,t] C N2 \N1 }, Y e N2\NJ(5.6) -rl( ) = '
o , TyeN 1 ,-:

for Y e N2  is continuous and the pair N2 /N0 , NI/N 0  of pointed spaces with the natural

inclusion I N/N 0  N2/N0  is an NDR-pair. In fact, the functions

r N2 /N0 x [0,1] N2/N0  and a N2 /N 0 + [0,1] defined by
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[y-oT(y)], 0 4 T(y) ( c
(5.7) r([y],) = c

[y-0c], c 4 TMy C =,

fT(y)/c, 0 ( T(y) r c

(5.8) (Y] .-I.-.
[1 , ~C 4 T(y) -,.'-

I

for y e N2  and a e (0,11 satisfy the requirements of Definition 2.3 (the constant

c > 0 is merely a scaling factor). With these functions the connection map

6 : N2/N + EN1I/N0  defined by equation (2.5) takes the form

r[Y-t(y),1-T(y)], 0 (4 (y) ( 1
(5.9) Wy(]) =

[No x 0], 1 ( r(y) 4 ,

I

for y e N2  (we have chosen c = 2). Hence Theorem 2.5 yields the following result.

COROLLARY 5.5

Let A,A be an attractor-repeller pair for the isolated invariant set S in the

metric local flow X L r. Furthermore, let No L N1 C N2  be a filtration of compact sets

in X such that (N2 ,N0 ) and (N1 ,N0 ) are index pairs for S and A, respectively,

and (N2 ,N1 ) is a regular index pair for A . Finally, let : N/N 0 + N2 /N 0  and

N N 2 /N0 + N2 /N1  be the natural maps and let 6 N2 /N 1 + N1I/N0  be defined by (5.9)

and (5.6). Then the following sequence is coexact

(5.10) N1 /N 0  _2 N /N N /N 1  EN I/N 0  N N2 /N 0 ** .

REMARK 5.6

Given an index pair (N,N 0 ) for the isolated invariant set S in a local flow

x C I, the pointed space EN1/N0  can be identified with the space NI/N 0  where
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N = N x (-1,1, No No x [-11] U N1 x (-1,1)

These two spaces define an index pair for the isolated invariant set S - S 0 0 in the

local flow X = X x RC c r r , it where the flow on is defined by

(YF)*t - (Y t,e t ) for y e F and ,t e R.

Note that each of the maps in the sequence (5.10) induces a morphism between the

corresponding connected simple systems. We denote these morphisme still by

I (A) * I(S), f : IS) + I(A*) and 6 I(A*) + ZI(A), respectively. Hence we get

the following coexact sequence of connected simple systema

(5.11) I(A) I(S) I(A*) ) E(A) E M-(S)

The whole point in this section is that this sequence is independent of the choice of the

particular index filtration. More precisely, we prove the following theorem (compare

KURLAND [71).

THEOREM 5.7

Let A,A be an attractor-repeller for the isolated invariant set S in the metric . •

local flow X L F. Furthermore, let No . N 1 L N2 he a filtration of compact sets in

X such that (N2 ,N0 ) and (NI,N 0 ) are index pairs for S and A, respectively, and

(N2 ,NI ) is a regular index pair for A*. Then

(i) the injection I N/N 0  N2/N0  induces a morphism between I(A,X) and

I(S,X) which is independent of the choice of the filtration,

lii) the projection if N 2/N0 + N2/N I induces a morphism between I(S,X) and

I(A ,X) which is independent of the choice of the filtration, and

-41-

%J

- " " ' "L _ . . " " - -" L .. _ -. , t ". . """"""". .".. . . . . .'"''''""" . . ."""""". ,""" " ' ' ".".". ' ','



(iii) the connection map 6 N2/N 1 + EI/M0 defined by (5.9) and (5.6) induces a

morphism between I(A*,X) and £I(A,X) which is independent of the choice of the S

filtration.

PROOF: Let N C N C N be another filtration of compact sets in X such that
0 1 2

(N2 ,N0 ) and (N1 ,N0 ) are index pairs for S and A, respectively, and (N2 ,N) is a

regular index pair for A*. Furthermore, let I N N2 /N0, : N2/N0 + N 2 AI,

N2A + EN INA0 denote the associated maps and let : N2 + [0,-] denote the

"entrance-time" for the subset Ni, defined analogously to (5.6).

In order to prove statement (i), choose T > 0 such that the implications

(5.12) Y*[-T,T] C N I\N ==> y e i1\i0

(5.13) y-[-"r,T] C. 1\.R= Y e N I\No ,

(5.14) Yf-TT] C N\N ===> Y e i 2o r.-

(5.15) Y-[-T,T) C g2\go .-.> y e N2\No ,

are satisfied and let ft N1/N0  I 1I0 and gt N 2/g0  N2 /N0  be defined by

(5.16) ft(y)) = 
.Y*3t, 

Y*(0,2t] L NI\Nor Y*(t,3t]C

[N0), otherwise, y e N1 ,

[y*3t], y([0,2t] L -N 2 \N0 , y*[t,3t] L N2 \N0
(5.17) gt(ty)) =

(No ], otherwise, y e N2

both for t T. Then we have to show that gt o 7 o ft :N/N + is homotopic toN1/0 N2/N0  i oooi o..."

*the canonical injection I N N N2/N0 . In fact, it follows from (5.12-15) that for

every y e N I  and every t ; T

-42-

.- . . .: .2"/.

.° "o °-o o"j o'.o°-',O'O f-".°o-". ..o--.o. . . ..,. . . . . . . ." . . . .. . . . . .. ".. . . . . . . .,.. . . . .... . . . . . . . . ..o". ... . . . . . . . . . . .. ~ i"." *°'-:?-o '.o



Y![0,2t] L 11\No, 'ytt,3t] L atNo I

'Y*(3t,5t] L 2 \io, Y-[4t,6t] L N2\N

is equivalent to y.(0,6t] L N2 \N0 . Hence

t o oI [y*6t], y*[0,6t) C N2 \N0
I g~t o Q ft([.y))

[No ], otherwise, y e N,

It follows from Lemma 4.7 that this map is homotopic to I N 1/N 0 + N2/N0 . Thus we have

established (i).

In order to prove (ii), suppose that the implications (5.14), (5.15) and

(5.18) y*[-T,T] C N2 \N 1 === y e N2I \I

(5.19) y'[-T,T] L RI == y e N2\N1

are satisfied, let gt 2/N0  N 2/N0  be defined by (5.17) and ht N 2/N1  N/ N 1  by

(520 [Y* 3t], Y*[0.2t] C N 2\Nip y*(t,3t1 Q C

[N otherwise, y e N2

both for t T. Then we have to show that htolrogt :0 n 0 / i
2 /10 92 /51 is homotopic to

the canonical projection T N 2I0 + N2/N1 . In fact, it follows from (5.14-15) and

(5.18-19) that for every y e )2  anO every t > T

y" 0,2t] N\No y [t,3t] L N 2\No

Y*[3t,5t] k N2\N1' y.[4t,6t] k-

is equivalent to Y"(0,6t] C W2\FT. Hence
K 2 1*
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ht 0 Ii0 g t [Y]t ) [06t 2 1

(N1] otherwise, Y L' 2

It follows again from Lemma 4.7 that this map is homotopic to 2t N20 + N2 /91  This

* proves statement (ii).

In order to prove statement (iii), choose T > 0 such that the implications (5.12-

15) as well as (5.18-19) are satisfied, let ht :N 2/N1 + "2 IRI be defined by (5.20)

*and ft N 11 + N1/N0  by

(5.21) ~ ~ fI [l [Y*3t] , Y* [0,2t] 1. WO i, Y t,3t] L C N

EN0 ], otherwise, Yt e -f

both for t > T. Then we have to show that Ef t 0 30 h t :N 2 IN I EN1/N 0  is hoetotopic

to 6. First of all, it follows from Lemma 4.7 that the map 6 0 is homotopic to the

ma N2/IN, EN I N 0  which is defined by

[Y*(6t+r(Y*3t)),1-r(y*3t)1, if Y-(0,3t] C N 2\N1

6t ((yl) =0 <r(y*3t) < 1 and Y*EO,6t+r(y*3t)] L. N \N0

(No x 01, otherwise, y e N2

A homotopy between Ef t 0 0 gt and 6 tis given by the family of maps

F M2/Ni * 1N/No, 0(0(41, defined by

I('Y*(6t+r (y)),1-T C y)], if Y*[0,2t] L N 2\N 1

F ((Yj) 0 < T (Y) < 1, and YEO0,6t+Ta (y)] C N \N1[No0 a], otherwise, Y e N2 2 0

where
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T (Y) = (1-a)f(y t) + ar(Y*t) - 2t, Y*0,2t) L N2\N I

Note that T(Y't) makes sense since yEO0,2t] C N2 \V 1  implies that Ylt (0 2\ Of

course, F1 = Furthermore it follows from (5.13-15) and (5.18) that for all

y e N2  and all t T

I

y,[0,2t) C 2\N il 2t < r(Y*t) < 2t + 1

y*(0,6t+T(Y*3t)] C N 2\N 0

is equivalent to

y'[0,2t] L N2 \Nil y-[t,3t] 21

0 < i(y-3t) < 1, y[3t+T(y.3t),5t+T(y-3t)] L-NI io

y*[4t+T(y-3t),6tT(Y'3t)] L N I\N0

This implies that F
0 

= Eft 0 0 gt. Hence it remains to show that F
O  

is continuous on

the domain N2/N I x [0,11. We prove this for the case t > 2T and t I 1 in seven

steps.

Step 1: If y.[0,2t] N2 \N1  and t ) 2T, then

JT(Y-t) i- t)l T •".

PROOF: First, yl0,t+T('Y-t)) L N2 \N 1  and hence 2.[T,t-T+ (y't)) C N2 \4 1 , by (5.18).

This implies
PROOF:lt First, T" >0tTyt T

- 5
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V P V V

Furthermore, y*(T,t+T(Y-t)) C P \ and hence y*[2T,t-T+t[(Y-t)) C N 2N by (5.19).

This shows that

r('r-t) i (Ylt) -T

Step 2: If t. > 2T, y*[O,2t] C N 2\N 1and 0 < T a (Y) < 1, then

2t - C1-O)T < r(~Y-t) < 2t + (1-C)T + 1

2t - OT < T(Y-t) < 2t +- aT + 1I

PROOF: Since T(Ylt) ( t(t) + T (Step 1), we have

0 < a(Y) 4 (1-O)i(y~t) + oT(T+i(y-t)) -2t

- T(Y-t) + OT - 2t

and

1 > (Yi) > (1-0)(T(Ylt)-T) + OT(Y~t) -2t

= ry't -(1-C)T -2t

Since T(ylt) > Tfet) T, we get

I> (Y >-l (1-0)7(y*t) + 0(r(y-t)-T) -2t.

i(y-t) -2t -OT

and

0 < T (Y) 4 (1-0)(T(Y-t)+T) + OT(Ylt) -2t

T (rlt) + (1-a)T -2t
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Step 3: If rh, < -3t NI-O, then F N 2/N1 + ENI/N 0  is continuous at ([y],0).

PROOF: Choose a ne.qhborhood W of (y,o) in N2 x [0,1) such that, whenever

(y',', e W, then T(y', < 3t - (1-o'T. Then it follows from Step 2 that either

Y*'[0,2t i( N2 \N1  or T ') L (0,1). Hence F([',) = [No x 0] for all

(y,o') e W.

Step 4: From now on we can assume that t(y) 3t - (1-O)T and hence

(,.22, y.[0,2t] N 2\N I

If I.22, is satisfied and T (y ) (0,1), then the function F is continuous at

PROOF: First note that F C([y) [No  0]. Secondly, note that the function Ta (y) is

continuous on the domain {Uy,) e N2 x [0,IlIy.[0,2t] f. N i . Hence for every

c > 0, there exists a neighborhood W of (y,a) in N2 x (0.1] such that, whenever

(y',o) e w, then y'[0,2t] r;NI = and T (y.) 0 [E,1-E]. This proves Step 4.

Step 5: From now on we can assume that (5.22) is satisfied and

(5.23) 0 ( T (y) < I.

If moreover y.[0,6t+T (y)] l cl(N \N0), then F is continuous at ([y],O).
2 0

PROOF: There is a t < 6t + I (Y) such that Ylt 0 cl(N 2 \N0 ). Hence there is a

neighborhood W of (y,C) in N2 x [0,1) such that, whenever (',0') e w, then

yl.(0,2t C N \Ni , 0 < T (Y') < 1, t < 6t + T (y'), and y't e cI (2\N ). Hence
21 2 0

F ([y'l) N0 X 0] for all (y',o) e W.
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0I

Step 6: If (5.22) and (5.23) are satisfied and if y![0,6t+T (y)] N2 \No, then F is

continuous at ([y],o). 5

PROOF: First note that, by Step 2, T(y) < 3t + (1-o)T + 1 < 4t + I and therefore

Y'(6t+T a (y)) e N, (recall that t 
) 

1). Now let U be a neighborhood of y,(6t+T (Y))

in F. Moreover, choose a neighborhood V of Y'(6t+Ta(Y)) in r and an C > 0 such

that

V.[-E,e] C U, yE[0,6t+t a(y)+e] C. N2 \N0

[T a(y)-,T a(y)+C] C- (0,1) .

Then there exists a neighborhood W of (y,o) in %2 x [0,1], such that, whenever

(yO) e w, then

S

y'*[0,2t] C N 2\N10 y'.[0,6t+T (y)+C] C N 2\N 0

IT'(Y') - T'(Y)I 1 c, y'(6t+rGCy)) e V

Then we get y'0[0,2t] C N2 \N0 0 < T (y,) < 1, y'*[0,6t+ 
0 

(y')] C N 2\N 0  and

y''(6t+T:(Y')) e U,TO (y' ) 
- 'r(Y)l C for all (y,') e w and hence

v
0

'C [*I) =Y'*(6t+T
0 

(Y')1,1-T
0 (',i') e (u f x [1-Tr(y)-C,1-r

0
a(Y)+e]

This proves Step 6.

0I
Step 7: If (5.22) and (5.23) are satisfied and if Y*[0,6t+T (Y)] - cl(N2 \N0

y*(6t+T a(Y)) e No , then F is continuous at ([y],o).

PROOF: Note that F
0
([Yl) [No X 01 and choose a neighborhood [U] of [N0] in

N1 /N0. Then

u ((u] ( N\N 0 ) U LN0  (r\N 1 )
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is a neighborhood of N0  in r and satisfies

[U] (U r1 \No) U [N0 •

Now choose a neighborhood V of No  in r and an c > 0 such that V.[-£,c] L U. Then

there exists a nieghborhood W of (y,0) in N2 x [0,') such that whenever

('',o) e w, then

y'.[0,2t] L N2 \Ni 0 < T 
0 (y') < ,

It(Y) - Ta' (yl)l e , y'.(6t+Ta(y)) e V

Hence we obtain y'o[0,2t] L N2 \N1 , 0 < T (y') < I, Y'*(6t+ (y)) e U and therefore

F0 ([yll) e {[yl.(6t+T o(Y)ll,-T V(y'fl,[N0 x 0]}

L- (U F N \N0 ) K [0,1] U [N0 x 0]

()X101- [u] x [0,11

for all (y',a') e w.

This proves Theorem 5.7. I!"
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6. CONTINUATION

The aim of this section is to establish the invariance of the Conley index for

V isolated invariant sets under (small) perturbations of the flow. For this purpose we

first collect some elementary properties of parametrized flows and, in particular, make

precise what we mean by continuation of isolated invariant sets (compare CONLEY [3,

Chapter TV.1]).

6.1I. PARAIFTRIZED FLOWS

Throughout this section we shall assume that A is a compact, locally contractible,

connected, metric space and X is a locally compact metric space. Furthermore, we assume

that F is a flow and X x A L r is a local flow with the property that if

(x,A)*t e X x A, then (x,A)-t e X x A for all x e X, X e A, t e R. Then, of course

X x X L r is a local flow for every X e A. We will always denote by

WX x x A X, rA : X x + A

the canonical projection maps.

LEM4A 6.1

For any compact set N C X the set

A(N) = (A e AIN x X is an isolatinq neighborhood in X x A)

is open in A.

S

PROOF: Suppose that there is a A e A, a sequence Ak e A converging to A and a

compact set N L X such that N x A is an isolating neighborhood in X x A but N x Ak

is not an isolating neighborhood in X x X . Then there exists a sequence
k

xk P N Icl(X\N) such that (xk,.Ak)R C N x Ak for all k F W. Any limit point
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x e N r cl(X\N) Of xk satisfies (x,A)-R C. N X A contradicting the fact that N x A

is anisolating neighborhood in X x A.

Let us now introduce the set

is xS XAINeA, s cx compact, S x is an

isolated invariant set in X x X)

6A of isolated invariant sets in x x A. For every compact set N L. X let us define the map

ON N AM S, a (X) I(N XA

Then we consider on the space S the topology which is generated by the sets

(a (TJ)IN C. X compact, U C A(N) open}

Note that Sis not necessarily Hausdorff as the following example shows.

Figure 4
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LFMMA 6.2

Let N,R be comp~act subsets of X and let u C ACN) and U c A(5i) he open. Then

the following statements hold.

(i) ACN,ii) ={X e ACN) rAC )IICN x X) =I(N x X)) is open in A.

(i) O U) fluo-() a (NC U (; ACN,IRb).

Ciii) a0N :(AM + s is continuous.

PROOF: Ci) Let X e ACN (.A(R~) such that I(N x X) V9I( x X) and suppose that there

exists a sequence XA converging to X with A k ACM (,A(R~) and

I(N x Ak k INxA). Let xk e X such that (Jk'k) e ( A k )\I(N x k) Let

tk e R such that (x k Xk).t k 0 N xXkA,. Let y e X be chosen such that Cy,A) is a

limit point of Cxk,k)*tk. Then Cy,A)-R C N XA and hence (y,X),R L. N xXA since

I(ii x A) = I(N x A). But since Cx k XAk ).t k 0N x Ak# we have y e N r, clCx\N)0

contradicting A 8 ACM.

(ii) follows from the definitions.

Ciii) If NC X is compact and ii C ACN) open, then

a N C0 CU)) =U ri ACN,N)

is open in A. I

The previous Lemma shows that the canonical projection map

~A S A

is a local homeomorphism. If S X Ae and N XA is en isolating neighborhood for

S XA in X XA, then the map
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AM S
NI

is an inverse of the restriction of WA S +A to the neighborhood o%(A(N)) of s x x

in S

REMARK 6.3

Let 0: A +S bea continuous map with it A 0  a IA and let H C X be acomipact

set. Then the set

A(N,o) = a -1(a(A(N)))

= (X e A(N)10(X) - I(N x

= {X e AIN x A is an isolating neighborhood for *(A) in X x A)

is open in A.

Whenever N C X x A and K L A are compact sets we define

N(K) =N n~ X x K

If N is an isolating neighborhood for the isolated invariant set S In X x A~ then

N(K) is an isolating neighborhood for S(K) in X x K.

LEMMA 6.4

(i) Let the function 0a S satisfy w A 0 a I 1A. Then a is continuous if

and only if
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(6.1) S = U 0(M)
AeA

is an isolated invariant set in X x A.

(ii) Let 0 A +S and T A +S be continuous functions with vA 0 = 1 and

W A 0 T= I1. Then the function a n T : A + S which sends A e A into 0(A) (, t(A) e S
I

is continuous.

(iii) Let 0 : A +S and a : A +S be continuous functions such that

X 0 = 1A and a(A) is an attractor in 0(A). Furthermore, let a (A) denote the

complementary repeller of (A) in 0(X) and let S C X x A be defined by (6.1). Then

a A + S is continuous and the sets

(6.2) A = U M(X), A* = U **(A)

AeA AeA

form an attractor-repeller pair in S.

PPOOF: (i) Let us first assume that S is an isolated invariant set, let N be an

isolating neighborhood for S in X x A and let No x A0 be an isolating neighborhood

for 0(A0 ) in X x A0  such that No x A0 C (x x A)\cl((X x A)\N). Then there exists a

compact neighborhood K0  of A0  in A such that No x K0 C N and K0 C A(N0 ).

Furthermore we can choose K0  small enough such that S(K0 ) C No x K0  since otherwise

there would exist a sequence (xk,Ak) e S such that Ak converges to A0  and

xk e X\N0 which would imply that (x0 ,A0) e 0(A0 ) fl cl(X\N0 x A0 ) for any limit point
xk

x0 of xk. We conclude that No x A is an isolating neighborhood for 0(A) in X x A

whenever A e K0  and hence 0(A) = 
0 N (A) for all A e K0 . Now the continuity follows p

from Lemma 6.2 (iii).

Conversely suppose that a A + S is a continuous function with n A 0 a 1 A  Then

there exists an isolating neighborhood N(A) x A for a(A) in K x A for every A e A.

Furthermore, it follows from Remark 6.3 that the set
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A(N(X),0)= {ji e A(N(X))jO(j) = IN(X) x U)}

is open in A for every A e A and hence there exists an open neighborhood U(A) of A

in A such that N(A) x p is an isolating neighborhood for 0(p) in X x p whenever

e cl(U(X)). Since A is compact, there exists a finite subcover U(ol),...,U(Xn) of

A. Now define the set

N = {(x,p) e x x Alp e U(X) ==> x e N(XA).

3I

n

Then N is a closed subset of U N(X.) x A and therefore N is compact. Moreover, if
J=1

(x,p) e s, then

U = f. U(Xj) r. A\U(X j
IJLu(A o)rcl (u(X

is a neighborhood of u in A,

W - ) N(X.) '
ecl(U( ).

is a neighborhood of x in X and W x U L N. Therefore N is a neighborhood of S

in X x A. Finally, S = I(N) since (x,P)R C N and p e U() imply that

(xp)*RC N(. x U and thus (x,p) e ON).

(ii) Choose compact sets N1 L X and N2 C X such that NI x X0 and N2 x X0 are

isolating neiqhborhoods for O(X ) and T( 0 ), respectively, in X x X0. By Remark 6.3,

there exists a compact neighborhood K0  of X0 in A such that

K0 L A(N1 ,0) , A(N2,T). Hence N, rN 2 x X is an isolating neighborhood for

o() r T(N) in X x ) whenever X L MO . This implies that a f T(A) = 2( for
1 2

every X e K0  and thus the continuity follows from Lemma 6.2.
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(iii) Choose compact sets N1 C N 2 L. X such that Ni x ' and N2 x X0 are

isolating neighborhoods for Q(X ) and O( 0) respectively, in X X0. By Remark 6.3,

there exists a compact neighborhood K0  of An0 in A such that

KO C A(N41 CO hi M(N 2 a), Then it follows from Lemma 3.2 (vi) that N x AX cl(N 2 \N) I A

* is an isolating neighborhood for a*(X in X X A whenever A e K12. Hence .

a (X) = a *(A) for A e K0  and therefore the continuity follows again from Lemma 6.2.
N

Furthermore it follows from (i) that A and A as defined by (6.2) are compact

subsets of S with A fl A' = o. Hence there exists a neighborhood U of A in S such

that cl(U) I A* - 05. If (x,X)*(- ,0] C. U then (x,A) e a(),) and w*(x,A) f, a(A) = j

and therefore (X,A) e a(A) C A (Lemma 3.2). By Lemma 3.1, this implies that A. is an

attractor in S. it follows again from Lemma 3.2 that its complementary repeller is given

by

A* U a* (A) ={(x,A) e SIW(x,A) (. A .

AeA

In some situations it might be useful to consider general maps T A + S such that ~-
1I 0 T A + A is not necessarily injective. This can be reformulated within the

framework of this section by considering X x A as a local flow in A x A where

(xA) e X x A is identified with the triple (x,vI o T( ), ) e Xx A x c r x a. -

Introducing the space

SA { S x A x e A, S x X e S, A A 0T()

endowed with an analogous topology as S, it is then easy to see that the map

TA: A *SA defined by T() = ( ) x for e A is continuous.
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At the end of this section we point out that some (global) phenomena cannot be

described within the framework of product flows X x A. An example for such a situation

K. is the flow on a tMoebius strip which is illustrated in the diagram below and involves a

change of orientation in the space X.

Figure 5

in such cases it might be useful to consider a local flow on a (locally trivial) fibration

instead of the product space X x A This could be a problem for future investigations.

6.2. LOCAL CONTINUATION

In this section we are going to prove a local continuation theorem for the Conley

index of isolated invariant sets. The result has been formulated in CONLEY (3] but the

proof is only roughly sketched. A complete but rather complicated proof can be found in

KURLAND [8]. We present a simplified proof which is based on the results in section 4.2.

Throughout this section we will adopt the notation of section 6.1 and assume i.n

addition that a A*S is a continuous map with W A 0 = a and that the isolated

invariant set S in x x A is defined by (6.1). Note that for any index pair (N1 ,N0 )

for S in X x A and for any compact set KC C A the sets ( 1 (X),N 0 (X) form an index

pair for the isolated invariant set S(K in X x K.

The local continuation theorem now consists of two parts. The first and easy part is

to show that for any index pair (N1 ,N0 ) for S in x x A the canonical injection map
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j(A) N 1(MIN 0 (X) + Nj/N 0  induces a morphism between the corresponding connected simple

P"A systems which is independent of the choice of the index pair (Proposition 6.5). The main

part is then to show that this morphism is in fact a local isomorphism (Theorem 6.7).

These facts will then be used to obtain a continuation result for the coexact sequence of

section 5 which is associated with an attractor-repeller pair in S (section 6.4).

PROPOSITION 6.5

Let (N1 ,N0 ) be an index pair for S in x x A. Then the canonical injection map

j(X) : N 1 (AX)/N0 (X) + IA40  induces a morphism between the connected simple systems

I(()Xx A) and I(SX x A) which is independent of the choice of the index pair.

PROOF: Let NN)be another index pair for S in X x A, choose T > 0 such that
10

(x,j)*[-T,T) C N \No~ (X,P) e i \io

(x,p)-[-T,T] C i1 \N .. > (x,li) e N I\No

and define the maps f(A t N (A)/N I(A) R N(A)/N (A) and g : N /N5+ N1N by

fxA]=[(x,X)*3t), (x,X)-[0,2t) L. N \No, (x,X)* [t,3t) c - i

[i0M ,otherwise, (x,X) e NI

gtx] = [(x,js)*3t], (x,uj)*(0, 2t) C1 NiN, (x,ju)'It,3t) CN\N

(N0], otherwise, (x,p) e N

for t )T. Then the composed map gt 0 3(,X) 0 f(x)t 1 (X)/N 0 A+IN is given by
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f(~)ttI] { (x,I).6t] , (x, ) [0,6t] C N1 \N
gt ( [No], otherwise,

for (x,l) P N M and hence is homotopic to the injection j() N (M)/N (A) + NI/N 0 .

The next Lemma provides the crucial step in proving that the injection map

j(0) : N I()/N0 (
1 ) Ni/No is (locally) a homotopy equivalence.

LEM4MA 6.6

Let (N1 ,N0 ) be an index pair for S in X x A and let 10 e A be given. Then

there exists a compact neighborhood K of 10 in A and times T, > 2T0 > 0 such that

the following stitements hold.

(i) N x K is an isolating neighborhood of S(K) and U x K is a neighborhood of

S(K) in X x K where the sets N C X and U C X are defined by

(6.3) N cl(TX (N 1(K)\N0(K))) = x (cl(NI ()\N 0(K)))

(6.4) U int r i(NI()\N0(M)) rel X
AeK X 1.0

(ii) For all x e X and u,A e K and T > T, the following implications hold

(6.5) (x,U)[-TT 0 ] C N x K ==> x e U

(,,(x,u)*E0,T]),I) C cl(N I (K)\N 0(K)

(6.6) (x,) [To I79 U x K

===> (.x((x,).T).A[0.T] C N # 0.
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PROOF: In order to prove statement i) let us choose isolating neighborhoods N and

for S in x x A such that N \N is a neighborhood of N in X x A and N is a
1 0

neighborhood of cI(NI\N0 ) in X x A (Lemma 3.7). By Remark 6.3, there exists a compact

MA ))~,a) (A(ixi i(A )),C). Tineighborhood K of A in A such that K - Ax( 0 (N, This

implies that

WX (N(AO) x K, Wx(A O)) x K

are isolating neighborhoods for S(K) in X x K. Furthermore we can choose K small
S

enough such that

(6.7) WX(-N(AO x K C. NI \No

(6.8) ,X (N I(X)\N0 (k)) CX C,((O0)) v A e K •

The first inclusion is obvious since N(A0  is contained in the interior of NI\N 0

relative X x A. If (6.8) would not hold for any neighborhood K of A0, then there

would exist a sequence (xk,k) e N1 \N0  such that Ak tends to X 0 and (xk,Ao) E N.

But then any limit point x0  of xk would satisfy (x0 'A0 ) e cl(N 1 \N 0 ), and

NIX ) e cl((X x A)\R), contradicting the fact that N is a neighborhood of
0

cl(N \N0  in X x A. From (6.7) and (6.8) we conclude that

Sx(N(A)) C W X(N (A)\N 0(A) C Xi C(A 0))

for all A e K. This proves statement Ci).

In order to prove statement (ii), let us choose the compact neighborhood K of X0

in A as in i). Then it follows from Lemma 4.6 that (6.5) holds for some To > 0.

Furthermore note that once (6.6) is satisfied for some T = T, > 2To, then it holds for

all T T, since the first condition in (6.6) together with (6.5) guarantees that
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(xu)o [T0 ,T-T0] C U x F. Now suppose that (6.6) does not hold for any

T= T, > 0 and any neighborhood of )0 in A. Then there would exist sequences xk e x,

k X, U e K, Tk > 2To, tk e (TO,Tk] Such that Tk tends to infinity, k and uk

tend to 1 and

(6.9) (Tr ((X v t cl(NI(X)\NoIK))

(6.10) (xk,Uk)-tk 0 U x K I

(6.11) (if (( xkU k)Tk),Ik) [0,T)] C N \N 0

It follows from (6.9) and (6.5) that (xk,1k).[TO,Tk-T 0] C U x K and therefore

tk O Tk-To. Now let x0 P N he a limit point of v X((xk,IIk)-Tk) and let 7 ) 0 be a

limit point of Tk - tk. Then it follows from (6.9) and (6.11) that

(x0,10).R C cl(NI\N 0) and hence (x0 ,o10 ) e S. But it follows from (6.10) that

(x0,11 )(-T) L U x K contradicting the fact that S(K) C-U x K. I'l

THF OREM 6.7

Let (N1 ,NO ) be an index pair for S in X x A, let A0 e A be given and let X

be a compact, contractible neighborhood of 0 in A which satisfies the conditions of

Lemma 6.6 for Ti > 2T0 > 0. Then the-injection map

j(N)= j (1) N(I()/N 0 (N) * N(K)/N0 ()

is a homotopy equivalence for every X e K and the map

f() f fk
( )  

N I (K)/N 0 (K) N 1 (1)/N 0 (I) defined by

Si
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(W X((x,u)*3Tfl.)*TJ, if (x,i0).10,2T] C N1 \N0

(6.12) f (,))x ,u] (T X *(,)(,T) 1 0No

(1R ((x,u)-3T),A)[0,TI C' N

[N (1)),otherwise

for (x,u) e NI(K is a homotopy inverse of j(X 1).

PR~OOF: First note that the composed map f(A) 0 j(A) N 1 )/M (1) +N I MIN 0)M is

qiven hy

fM~~~ 0 Exd (x,X )*4T] , if (x,))[0,4T] C- N 1 N0

EN 00)], otherwise

for (x,A) e N 1 () and it follows from Lemma 4.7 that this map is homotopic to the

identity. In order to show that JCM 0 fo) is also homotopic to the identity we make

use of the fact that K is contractible which means that there exists a function

r K (0,1]+ K such that

(6.13) r(U.0) = , r(v,l) A v ii e K

Now we define Vi~e map F N1(K)N 0(K X [0,11 *N 1(1C/N 0(K by

[(wr ((x,u)V3T),r1)).1, if (x,Ii). f0,2TJ C~ N I\No

F([x,u],r) J(w(i) ('ffT]r X) C N1\N

(1 ((x,j),3T),r(u,1fl. [0,Tj C N I\No

[N0(Y)I, otherwise

for (x,Lj) e N1 (K) and e (0,11. Then it follows from (6.13) and (6.12) that
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F(-,1)=I) 0 f0l) and that F(*,0) N1 (K)/N0 (K) + N1 (K)/N0 (K) is given by

{[(x,j')-4T1 , if (x,u)- [0,4T] C N1 0No
F([xIjI) =

[N0(K)], otherwise

for (x,11) P and therefore is homotopic to the identity (Lemma 4.7). It remains to

show that F is continuous.

In the following cases the continuity can be obtained by standard arguments as in the

proof of Lemma 4.7 or Theorem 5.7 (iii).

2. (iw x((X,1I)-[T,3T1),r(Uj,P)) 9' cl(N I (K)\N (Y))

3. (wiT ((x,u).3T),r(U,P))*[O,Tj q' cl(N I (I() N 0(x))

4. (-Rx ((x,ij)*3T),r(U,9*)).T e N 0 .0

Therefore we can assume from now on that

(6.14) (X'u)-[0,2T] cl(N 1(K)\W (K))

(6.15) (W ((x,u)*[T,3T] ),r(u,'7)) C cl(N 1(K)\N 0(K)),

(6.16) (17x ((x,u)*3T),r(u,r)). [0,TI C N I\

Now Lemma 6.7 comes in. First of all, since T ;D 2To it follows from (6.1A) and (6.5)

that (x,iU)*!T,T+T 0  C U x X where U C X is defined by (6.4). Secondly, it follows ®

from (6.15), (6.16) and (6.6) that (x,u)-[T+r 0,3T] C U x K. Finally, it follows from

(6.15) and (6.5) that (x,U)12T 0N 0 . Therefore the conditions (6.14) and (6.15) can be

replaced by

(6.17) (x,u),[0,2Tj C N

(6.18) (x,ui*[T,3T] C U x K



| - . .

But the conditions (6.16), (6.17) and (6.18) together are stable with respect to small

variations in (x,M) e NI(K) and E e [0,11. This proves the continuity of F. I?

Since A is a connected space, we obtain as an immediate consequence of Theorem 6.7

that the homotopy index h(o(A)) of the isolated invariant set O(M) in X x A is

independent of X. In fact, it depends only on the path-component of 0() in S (Lemma

6.4 together with Theorem 6.7). Furthermore, combining Theorem 6.7 with Proposition 6.5,

we obtain that there is locally a unique isomorphism between the connected simple systems

I(G(A),X x A) and I(O(v),X x p). If A is connected then such an isomorphism exists

for any two X,ui e A. However, we will see in the next section that globally this

isomorphism need no longer be unique.

6.3. GLOBAL CONTINUATION

We first point out that the global isolated invariant set S in X x A may have a

much richer structure than the isolated invariant set U(M) in a single fiber X x X.

This is illustrated by the following example

p

Figure 6

tp
in which the flow on r = X x A = R x S i 

is given by (x,)*t (xet,A) for x e R and

Ae S
I. 

Then the homotopy index of O1M) = (0,X) is h((A)) = EI but

h(S) = 12 V EI. Hence the qlobal injection j(X) N I()/N (A) M+ N/N 0  cannot be a

homotopy equivalence in this case. However, if A is a contractible space, one might
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expect that this global injection is indeed a homotopy equivalence. We leave this as an

open problem.

In order to obtain an isomorphism between any two connected simple systems

I0(),X x 1) and I(o(ii),X x u) it is useful to rephrase the statement of Theorem 6.7 .

as follows.

COROLLARY 6.8

Let (N1 ,N0 ) be an index pair for S in X x A and let K C A b. a compact,

contractible set which satisfies the conditions of Lemma 6.6 for T1 > 2T0 > 0. For

X,U e K and T ' T, let the map F(X,U) = FK(IV) : N(II)/N0 (i) + NI()N0(X) be

defined by

((x((x)3T),1)T1, if (x,1j)o[0,2T) C N \N0
(Wx ((x,u) [T,3T]),)N) C' NI \No

(6.19) F (,u)[xu] =

K (x ((x,u)3T),f)l[0,T] C N I\No

(N0 ( I, otherwise

for (x,u) e NI0). Then for all l,u,v e K

(6.20) FK(.,') 0 FK(u,v) ,

(6.21) F (1,A) - 1
K

In particular, F K (,u) is a homotopy equivalence with homotopy inverse FK (W,}.

Furthermore, if (NiNi0 ) is another index pair for S in X x R with respect to

which K satisfies the conditions of Lemma 6.6 and if

F K(,U) N (u)/N (U) N( )/N () is defined analogously to (6.19), then the maps
K1 0 1 0
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F K(,P) and FK(X,p) induce the same isomorphism between the connected simple systems

I(O(p),X x V) and I(o(X),X x A).

PROOF: With the notation of Theorem 6.7 we have FK(XP )  fK(X) o jK( ). Therefore

(6.20) and (6.21) follow from the fact that f (A) 0 jKM.) and jK(X) 0 fK(X) are
K K..

homotopic to the respective identity maps for every X e K. The remainder of the

Corollary is a consequence of Proposition 6.5. I P

If A is a compact, connected space we can connect any two pints p e A and X e A

by a finite sequence of compact sets K each of which satisfies the conditions of Lemma

6.6. Any such sequence induces an isomorphism between the connected simple systems

I(o(u),X x u) and I(o(X),X x X). This motivates the introduction of the following

subcategory of the category of pointed spaces and homotopy classes of maps associated with

a continuous function A + S satisfying iA 0 0 = IA . This category may be

considered as the global Conley index of a in X x A and is defined by

(6.22;1) I(o,X,A) =(IoI m )

where

{N(A)/N 0 (X)]X e A and N (X),N is an index
(6.22;2) 

.....

pair for a(X) in X x A}

= f(f]IN 1 (X)/N 0 (A) e Io, N(I(P)/N 0 (Pj) e 10 and

(6.22;3) f : N1 ()/N0 () N I()/N 0() is a finite composition

of maps defined in Lemma 4.7 and Corollary 6.81

The global Conley index I(a,X,A) of a in X x A has to be well distinguished from the

Conley index I(S,X x A) of the global isolated invariant set S in X x A. If A is
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connected, then the category I(O,X,A) has the property that there is at least one

morphism between any two objects and that every morphism is an equivalence. However,

I(,X,A) is in general not a connected simple system since there may be different

isomorphisms between the same objects. This is the case in the parametrized flow

illustrated in the diagram below.

Figure 7

However, if A is simply connected (every closed arc is homotopic to a constant where the

end points are fixed), then we will show that I(a,X,A) is a connected simple system.

This result has first been stated in terms of the cohomology of the isolated invariant

sets and is due to MONTGOMERY [9]. The corresponding theorem in CONLEY [3] has been

phrased in terms of continuation along arcs.

THEOREM 6.9

Suppose that A is simply connected and let 0 A S be a continuous map with

W A 0 = 1 A* Then I(O,X,A) is a connected simple system.
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PPOOF: We have to prove that every morpbism in Im with the same domain and range is in

the class of the identity map. Using the second part of Corollary 6.8 one can first show

that every map f : N1 (M)/N0 (X) - NI(I)/N 0( ) with If] e Im is homotopic to a finite

composition of maps defined by (6.19) and associated with a single index pair (N1 ,N0 )

for S in X x A. Hence we can assume that there are finitely many compact contractible

sets YO,...,Kk in A satisfying the conditions of Lemma 6.6 and points X e Kj_ 1 f, Kj,

j = 1,...,k, X0 = Xk+1 = X e K0 ('Kk  such that

f = Fk( k+1,Xk) 0 F k-1 (k,Ak ) k .- 0 F0 (AX,A0)

where the maps Fj= FK are defined by (6.19). Let us extend [K0,...,K k }  to a

collection of compact, contractible sets K0,...,K n  which satisfy the conditions of Lemma

6.6 for T ) T, > 2T0 > 0 and are chosen such that the sets int K) = A\cl(A\K ) cover

A. Using (6.20) we can assume without loss of generality that Aj e int Yj_ , int X

for j = 1,...,k and X0 e int K0 . int Kk. Since the sets Kj are contractible, there
k

exists an arc a [0,1) + U int K. such that al(0) = a (1) = ) 0  and
j=0

j = a1 (%j) , a 1([jj+1 ) Cint Kj for j = 0,...,k. Now we make use of the fact that 5

A is simply connected and conclude that there exists a continuous family of arcs

at : [0,11 + A, 0 ( t 1 1, such that at (0) = at (1) = A0 for all t e [0,1] and

a0 ()E A0. With every arc a t  we can associate a sequence of maps Fv(j)( Oj+JIj),

j = 0. , defined by (6.19) and such that vj = at(C.), 0 = C 
<  < 

.
<  1,

j t 0

and a (!j,(9+l]) int KV(j) , j = 0,.... Let ft : N( 1 1)/N0 (A) + N (X)/N0 (X) denote

the composition of these maps. Then it follows from (6.20) that the homotopy class of

ft is independent of the choice of the points and the indices v(j). This fact

together with the continuous dependence of the condition a t([CjCj+1]) Cint K(j) on

t shows that [ft
1  

is independent of t e [0,11. Finally, it follows from (6.20) and

(6.21) that f0  is homotopic to the identity on NI(M)/N 0 (A). -

-8
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6.4. CONTINUATION OF ATTRACTOR-REPELLER PAIRS

It is the purpose of this section to combine the continuation results of section

6.1-3 with the coexact sequence of section 5 associated with an attractor-repeller pair.

In addition to the notation and assumptions of section 6.1 we will assume throughout

this section that 0 : A + S and L : A + S are continuous maps such that

IA 0 0 = 1 A and a(X) is an attractor in c0(). Then the complementary repeller

a(X) of a(X) in U(X) also defines a continuous function from A into S and the

sets A, A* defined by (6.2) form an attractor-repeller pair for the isolated invariant

set S defined by (6.1) in X x A (Lemna 6.4).

Now let No C NI L N2 be a filtration of compact sets in X x A such that

(N2 ,N0 ) alid (NI,N 0 ) are index pairs for S and A, respectively, and (N2 ,N1 ) is a
*

regular index pair for A . Furthermore, let 1 : N1iN 0 + N2/N0  and w t N2/N 0 + N2/M1

be the natural maps and let the connection map 6 : N/N I + EN/N 0  be defined by (5.9)

and (5.6). For any X e A let the corresponding maps be denoted by

I(X) N NI)O (A) + N 2(A)/A Z0(A), W%'A) : YI2A)IN0(A) + N2 M/N I 1A),

6(M) (X)/N (X) + N I)/N (A). Then the following diagram commutes2 1 1 0

N1 /N o  - N2/N0  - N2 /N 1  -- 6- E/N -...

(6.23) ti j() k0 TziA)
M (X)/N (X) N 2()/N0) N 2()/N () E I1 (A)N 0(A)

where i(A), j(X) and MA) are the natural inclusion maps. It follows from Theorem 5.7

and Proposition 6.5 that all the maps in diagram (6.23) induce morphisms of the

corresponding connected simple systems which are independent of the choice of the index

filtration No L N I L N2 . Therefore we obtain the following commuting diagram of

connected simple systems in which the rows are coexact.
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I(A(K)) I(S(K) ' I(A*(KI) E VIA(M))

6.(6.24) t i(x) j() k(A) Ei(A)

Here we have replaced A by any compact subset K C A. If this set is contractible and

satisfies the requirements of Lemma 6.6 for each of the index pairs (N,N 0 ), (N2 ,N0 ),

(N2 ,NI), then it follows from Theorem 6.7 that the vertical maps in diagram (6.24) are

equivalences for every A e K. The homotopy inverses of these equivalences define, of

course, again morphisms between the respective connected simple systems and make the

(vertically reverse) diagram commute. This implies that for any two points A, u in the

same c ,-nected component of A and any connecting sequence of compact contractible sets

Kj C A which satisfy the conditions of Lemma 6.6 there is a (unique) commuting diagram of

the form

I(CL(1)) L( -0 V(00)) I (a* (1j) --"1)
(6.25) 4F(X,u) 4G(A,ij) IH(X,1i) F(X,pa)

where the vertical morphisms are equivalences. Finally, it follows from Theorem 6.9 that

the vertical morphisms in (6.25) are independent of the choice of the connecting sequence

Kj if A is simply connected. This proves the following result (compare KURLAND [81).

THEOREM 6.10

If A is simply connected, then the maps i(A) I(a(X)) + I(o(A)),

i(A} I(o(A)) + I(. (X)), 6(A) : I(. (A)) + E1(a(A)) of section 5 induce the following

coexact sequence of connected simple systems

(6.26) I(a,X,A) 1(o,X,A) I I( a,X,A) °I(a'XA)
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7. CONCLUSIONS

In this paper we have given complete proofs for most of the basic abstract results in

the index theory of isolated invariant sets. Of course, there are many questions left

open.

One of them is to develop a continuation theorem for flows on fibrations rather than

product spaces x x A. Another problem is the relation between the global Conley index

I(o,X,A) and the Conley index I(S,X x A) of the global isolated invariant set

S = U O(X) in the parametrized flow X x A. For example, there is the question whether
XeA

I(0,X,A) is isomorphic to I(S,X x A) if A is simply connected.

Several other questions have been indicated by CONLEY [31. Among these there is the

observation that information gets lost by collapsing the exit set N0  in the index pair

(N1 ,N0 ). This leads to the question whether a sequence of index pairs which collaps to

S gives more information which can be used in a nice way for the definition of algebraic

invariants. Another possible refinement of the Conley index might be to consider only

special classes of homotopies since all the maps and homotopies in the theory are given by

flow induced maps.

Furthermore, there is a duality in homotopy theory between fibrations (mapping

fibration, loop functor, exact sequence) and cofibrations (mapping cone, suspension

functor, coexact sequence). A very nice presentation of these duality relations can be

found in WHITEHEAD (13]. Since index pairs only give rise to a coexact sequence there

arises the question whether there is some kind of a dual concept.

Of course, there is a big area of open questions when it comes to the point of

applying the index theory to obtain results for concrete differential equations. Despite

the fact that the Conley index has proven to be a very useful tool for many problems,

there is the question under which conditions infinite dimensional systems can be

formulated in the framework of section 3. For some cases this has been done, e.g. by

SMOLLER (11. If this is not possible then there arises the question what one can do if

X is not locally compact and r is only a semiflow. Some steps in this direction have
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been taken by RYBAKOWSKI-ZEHNDER [10). Another possibility might be to go to finite

dimensional approximations (see for example CONLEY-ZEHNDER [4] 1). I

We stop at this place since the list of open questions has no end. %
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